The Scalar Potential in Noncommutative Geometry

نویسنده

  • A. H. Chamseddine
چکیده

We present a derivation of the general form of the scalar potential in Yang-Mills theory of a non-commutative space which is a product of a four-dimensional manifold times a discrete set of points. We show that a non-trivial potential without flat directions is obtained after eliminating the auxiliary fields only if constraints are imposed on the mass matrices utilised in the Dirac operator. The constraints and potential are related to a prepotential function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singlet scalar dark matter in noncommutative space

In this paper, we examine the singlet scalar dark matter annihilation to becoming the Standard Model particles in the non-commutative space. In the recent decades, many candidates of dark matter have been offered,  but our information about  the nature of dark matter is still limited. There are such particle candidates as  scalar matetr, fermion, boson, gauge boson, etc.; however, they have nei...

متن کامل

UV / IR Mixing for Noncommutative Complex Scalar Field Theory , II ( Interaction with Gauge Fields )

We consider noncommutative analogs of scalar electrodynamics and N = 2 D = 4 SUSY Yang-Mills theory. We show that one-loop renormalizability of noncommutative scalar electrodynamics requires the scalar potential to be an anticommutator squared. This form of the scalar potential differs from the one expected from the point of view of noncommutative gauge theories with extended SUSY containing a ...

متن کامل

Noncommutative Induced Gauge Theories on Moyal Spaces

Noncommutative field theories on Moyal spaces can be conveniently handled within a framework of noncommutative geometry. Several renormalisable matter field theories that are now identified are briefly reviewed. The construction of renormalisable gauge theories on these noncommutative Moyal spaces, which remains so far a challenging problem, is then closely examined. The computation in 4-D of t...

متن کامل

Noncommutative Differential Geometry with Higher Order Derivatives

We build a toy model of differential geometry on the real line, which includes derivatives of the second order. Such construction is possible only within the framework of noncommutative geometry. We introduce the metric and briefly discuss two simple physical models of scalar field theory and gauge theory in this geometry. TPJU 2/94 January 1994 Partially supported by KBN grant 2 P302 168 4 E-m...

متن کامل

Solution of Vacuum Field Equation Based on Physics Metrics in Finsler Geometry and Kretschmann Scalar

The Lemaître-Tolman-Bondi (LTB) model represents an inhomogeneous spherically symmetric universefilledwithfreelyfallingdustlikematterwithoutpressure. First,wehaveconsideredaFinslerian anstaz of (LTB) and have found a Finslerian exact solution of vacuum field equation. We have obtained the R(t,r) and S(t,r) with considering establish a new solution of Rµν = 0. Moreover, we attempttouseFinslergeo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995